首页> 外文OA文献 >Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics
【2h】

Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics

机译:实际反应堆中的预测质量表面反应化学 模型:整合第一性动力学蒙特卡洛模拟 进入计算流体动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a numerical framework to integrate first-principles kinetic Monte Carlo (1p-kMC) based microkinetic models into the powerful computational fluid dynamics (CFD) package CatalyticFoam. This allows for the simultaneous account of a predictive-quality surface reaction kinetics inside an explicitly described catalytic reactor geometry. Crucial means toward an efficient and stable implementation are the exploitation of the disparate time scales of surface chemistry and gas-phase transport, as well as the reliable interpolation of irregularly gridded 1p-kMC data by means of an error-based modified Shepard approach. We illustrate the capabilities of the framework using the CO oxidation at Pd(100) and RuO2(110) model catalysts in different reactor configurations and fluid dynamic conditions as showcases. These showcases underscore both the necessity and value of having reliable treatments of the surface chemistry and flow inside integrated multiscale catalysis simulations when aiming at an atomic-scale understanding of the catalytic function in near-ambient environments. Our examples highlight how intricately this function is affected by specifics of the reactor geometry and heat dissipation channels on the one end, and on the other end by characteristics of the intrinsic catalytic activity that are only captured by treatments beyond prevalent mean-field rate equations.
机译:我们提出了一个数值框架,将基于第一原理的动力学蒙特卡罗(1p-kMC)微动力学模型集成到强大的计算流体动力学(CFD)程序包CatalyticFoam中。这允许同时考虑明确描述的催化反应器几何形状内的预测质量的表面反应动力学。高效,稳定实施的关键手段是利用表面化学和气相传输的不同时间尺度,以及通过基于错误的改良Shepard方法可靠地插值不规则网格的1p-kMC数据。我们展示了在不同反应堆配置和流体动力学条件下,在Pd(100)和RuO2(110)模型催化剂上使用CO氧化的框架的功能,如展示。这些展示强调了对原子化学在近乎环境中的催化功能的理解时,必须对表面化学性质和流动进行可靠的处理,并在集成的多尺度催化模拟中进行深入研究。我们的例子强调了这一功能如何复杂地一方面受到反应堆几何形状和散热通道的影响,另一方面受到固有催化活性特征的影响,固有催化活性的特征只有通过普遍的平均场速率方程之外的处理才能捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号